

Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica

Raúl Moreno Tovar, Luc Barbanson, Oscar Coreño Alonso Neoformación mineralógica en residuos mineros (jales) del distrito minero Zimapán, estado de Hidalgo, México Minería y Geología, vol. 25, núm. 2, abril-junio, 2009, pp. 1-31, Instituto Superior Minero Metalúrgico de Moa 'Dr Antonio Nuñez Jiménez' Cuba

Disponible en: http://www.redalyc.org/articulo.oa?id=223515955003

Minería&Geología

Minería y Geología, ISSN (Versión electrónica): 1993-8012 revistamg@ismm.edu.cu Instituto Superior Minero Metalúrgico de Moa 'Dr Antonio Nuñez Jiménez' Cuba

¿Cómo citar?

Fascículo completo Más información del artículo

Página de la revista

L

www.redalyc.org

Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

Neoformación mineralógica en residuos mineros (jales) del distrito minero Zimapán, estado de Hidalgo, México

Raúl Moreno Tovar^{1,2} Luc Barbanson³ Oscar Coreño Alonso¹ morenot@uaeh.reduaeh.mx luc.barbanson@univ_orleans.fr

Resumen

Los residuos mineros, depositados en presas de jales, son expuestos a las condiciones climáticas ambientales bajo las cuales ocurre la alteración, dispersión y movilidad química que dan origen a una mineralogía secundaria a partir de la primaria. En el distrito Zimapán, el yacimiento (skarn) de tipo Zn-Pb-Ag-(Cu) ha generado un considerable volumen de residuos (50 años de acumulación), almacenados en las presas San Miguel, Santa María y El Monte. Se estudió la neoformación mineralógica para definir el comportamiento químico de metales, su impacto al ambiente y a la salud. La espectrometría de plasma de inducción acoplada, mostró concentraciones significativas de arsénico (13 135 mg/kg), plomo (3 934 mg/kg), zinc (11 363 mg/kg) y cadmio (610 mg/kg). El análisis por difracción de rayos X reveló, como fases minerales mayoritarias, la calcita y el cuarzo, y como minoritarias e indicios al yeso, pirita y esfalerita. La microscopía óptica de polarización, electrónica de barrido y microsonda electrónica, evidenciaron la neoformación de arseniatos férricos (escorodita y simplesita), hidróxidos y sulfatos férricos y de anglesita y cerusita como resultado de la alteración, oxidación e hidrólisis de sulfuros como arsenopirita, pirrotita y galena. La esfalerita se clasificó como marmatita por su contenido de hierro. Se determinó arsénico, cadmio y bismuto en partículas de sulfosales (boulangerita) las que pueden ser liberadas durante los procesos de meteorización, concluyendo que estos residuos pueden considerarse potencialmente tóxicos.

Palabras clave:

Alteración, jales, meteorización, neoformación mineralógica, Zimapán.

Recibido: octubre 2008 / Aceptado: junio 2009

¹ Universidad Autónoma del Estado de Hidalgo. México.

² Universidad Autónoma de San Luis Potosí. México.

Mineralogical neoformation in mining residues (tailings) at the mining district Zimapán, state of Hidalgo, Mexico

Abstract

The mining plant's wastes discharged in tailings ponds are under certain environmental conditions which cause chemical alteration, dispersion and mobility and therefore leading to a secondary mineralogy from the first one. In the district Zimapan, the orebody (skarn) containing Zn-Pb-Ag-(Cu) has generated a considerable amount of waste (50 years of disposal) stored in the ponds of San Miguel, Santa Maria and El Monte. The objective of this investigation was to determine the mineralogical neo-formation for the identification of the chemical behavior of metals in addition to environmental and health impact. An induction-coupled plasma spectrometry conducted revealed significant concentrations of trace elements in the chemical composition of the waste. The average concentrations were 13 135 mg/kg for As, 3 934 mg/kg for Pb, 11 363 mg/kg for mg/kg for Zn and 610 mg/kg for Cd. According to the mineralogical characterization using X-ray diffraction, calcite and quartz were identified as the majority mineral phases and gypsum, pyrite and sphalerite as the minority mineral phases as well as traces. During the completion of optical microscopy of polarization, sweeping electronics and electronic microsound, the neoformation of arseniates ferric (scorodite and symplesite), hydroxides and ferric sulfates and anglesite and cerusite was identified resulting from alteration, oxidation, sulphide hydrolysis such as arsenopyrite, pyrrhotite and galena. The sphalerite was classified as marmatite because of its iron content. As, Cd and Bi were found in particles of sulphosalts (boulangerite mineral); which can be released during meteorization; consequently, it was concluded that the waste is considered to be potentially toxic.

Key words

Zimapan, mineralogical neo-formation, tailings, alteration, weathering.

INTRODUCCIÓN

La mayoría de los depósitos minerales son explotados por algunos componentes primarios económicos, sin embargo, estos pueden contener otros elementos en cantidades subeconómicas. Por ejemplo, el cadmio raramente es considerado producto económico, ya que se le encuentra sustituyendo al zinc en la estructura cristalina de la esfalerita (ZnS) y, el arsénico, es común en muchos depósitos como componente de la arsenopirita. Estos elementos son normalmente desechados en los residuos mineros (Seal et al., 2000).

Los residuos mineros (llamados jales en México) normalmente son depositados en embalses o presas sobre distintos tipos de terrenos de la superficie donde permanecen expuestos a las condiciones climáticas ambientales. Bajo estas condiciones puede ocurrir la dispersión de contaminantes por medios físicos (erosión, transporte eólico y pluvial) y/o por su alteración (reacción y neoformación) y movilidad química (disolución y transporte en medio acuoso) que dan origen a una mineralogía secundaria (precipitación de fases minerales secundarias como óxidos, oxihidróxidos, sulfatos e hidroxisulfatos (Nordstrom & Alpers, 1999). Algunas de las fases minerales secundarias formadas en estos horizontes o zonas pueden hidrolizarse al entrar en contacto con el agua meteórica y producir y liberar acidez al medio, un ejemplo de ello es la jarosita (Dold, 1999).

Por otra parte, la reactividad de los minerales (sulfuros principalmente) en las presas de jales presenta cambios que difieren de un sitio a otro, en función de la mineralogía del tipo de yacimiento explotado. En el distrito minero de Zimapán, el depósito existente es un skarn de tipo Zn-Pb-Ag-(Cu) y ha generado un considerable volumen de residuos, depositados en las presas de jales San Miguel, Santa María y El Monte, como consecuencia de 50, 30 y 20 años aproximadamente de acumulación de jales, respectivamente. El objetivo de este estudio fue determinar la neoformación mineralógica para

definir el comportamiento químico de los metales pesados (movilidad, adsorción, desorción, entre otros), su posible impacto al ambiente (generación de drenaje ácido, contaminación de suelos y acuíferos) y a la salud (bioaccesibilidad y biodisponibilidad). Cabe señalar que en este estudio se denomina mineralogía primaria a la propia del yacimiento (mena y ganga), mientras que a la generada en las presas de jales por la acción de las condiciones ambientales se le aplica el término de mineralogía secundaria.

Área de estudio

El distrito minero de Zimapán se sitúa en la porción occidental del estado de Hidalgo, a 200 km al noroeste de la ciudad de México, por la carretera estatal no. 85 Actopan-Ixmiquilpan-Tasquillo. Sus coordenadas geográficas centrales son 20° 44' 00" de latitud norte y 99° 23' 00" de longitud oeste. Está situado en una región de clima subcálido, con precipitación media anual de 1 070 mm y una temperatura promedio de 21 ºC (Figura 1). La secuencia estratigráfica de la porción centro-noroccidental del estado de Hidalgo, donde se ubica el distrito minero Zimapán, está representada de base а la cima por: la secuencia volcánicola sedimentaria Formación Trancas (Simons & Mapes, 1957; Segerstrom, 1962; Carrillo & Suter, 1991), cubierta discordantemente por secuencia una sedi-mentaria calcáreo-pelítico en la parte inferior (Formación Doctor), donde se aloja la mineralización, y otra superior pelíticocalcáreo (Formación Soyatal). Estas secuencias son intrusionadas por rocas de composición ácido-intermedia con una edad de 62 a 57 millones de años, según datación Rb/Sr (González & Jaimes, 1986; JICA, 1980; Gaytán, 1975). Sobreyace discordantemente el Fanglomerado El Morro (Edwards, 1955), seguido por una secuencia volcánica andesítica, en la base, de afinidad calcoalcalina (Geyne et al., 1963) y otra riolítica en la cima (JICA, 1980). Finalmente, un basalto de edad

Pliocuaternario, típico de la Faja Volcánica Transmexicana (Yta & Moreno, 1997). La morfología de los minerales es de mantos, chimeneas cuerpos y diseminaciones. Los mantos se asocian al paquete calcáreo-pelítico, con texturas bandeadas del tipo de reemplazamiento. Las chimeneas presentan, en ocasiones, hasta 65 m de longitud por 35 de ancho, su estructura es caótica y se asocia a la intersección de diques o de fallas y de morfología burdamente elíptica. Los cuerpos diseminados están alojados en el intrusivo con fracturas irregulares individuales o en stockwork (Yta y Moreno, 1997). La mineralogía reportada del yacimiento, considerada como primaria, está constituida principalmente por galena (PbS), esfalerita (ZnS), pirita (FeS_2) , calcopirita $(CuFeS_2)$, arsenopirita (AsFeS), pirrotita (Fe_{1-x}S), bornita (Cu₅FeS₄), estibina (Sb_2S_3) y boulangerita $(Pb_5Sb_4S_{11})$. Además, se ha reconocido wollastonita (CaSiO₃), andradita [Ca₃Fe₂ $(SiO_4)_3],$ diópsida [CaMg(SiO₃)₂], idocrasa (Ca₆[Al (OH,F)]Al₂(SiO₄)₅), piroxeno-manganeso [(FeMn)SiO₃], salita $[CaFe(SiO_3)_2]$, magnetita (Fe₃O₄), scheelita $(CaWO_4)$, $(Fe_{1-x}S)$, galenobismutina $(PbS.Bi_2S_3)$, cuarzo (SiO_2) , calcita $(CaCO_3)$ y sulfosales de plomo y plata; meneghinita ($Pb_{13}CuSb_7S_{24}$), jamesonita ($Pb_4FeSb_6S_{14}$), freibergita [(Ag, Cu, Fe)₁₂(Sb, As)₄S₁₃], pirargirita (Ag_3AsS_3) $(Ag_3SbS_3),$ proustita У bindheimita $[Pb_2Sb_2O_6(O,OH)]$ de carácter supergénico (Villaseñor et al., 1987). La textura cataclástica es común, se refleja en la fracturación de la pirrotita y de la calcopirita (Gemmell, 1983). La composición mineralógica, morfología, y la relación con los intrusitos, confirman al yacimiento como un skarn proximal cálcico de tipo Pb-Zn (Einaudi, 1981).

Figura 1. Plano de localización de las presas de jales Santa María, San Miguel y El Monte, en el distrito minero Zimapán.

METODOLOGÍA

Muestreo (georreferenciado GPS)

Se realizó en los taludes y la superficie de las presas. Se colectaron en total 38 muestras, 12 de Santa María, 7 de San Miguel y 19 de El Monte. El muestreo fue en forma de canal y pozo con una longitud de 1-1,50 m por 0,30 m de espesor, con un peso aproximado de 1,5 a 2,0 kg. El secado se realizó a temperatura ambiente (23 °C aproximadamente) en un cuarto cerrado y libre de corrientes.

Análisis químico cuantitativo

Se realizó en el laboratorio del Servicio Geológico Mexicano (SGM) por elementos en traza (Ag, Pb, Zn, Cu, As, Bi, Se, Cd, Sb, Cr, Ni, W,) y elementos mayores calculados en base a óxidos (Al₂O₃, CaO, K₂O, MgO, MnO, FeO, Na₂O, P₂O₅, TiO₂, SiO₂), por espectrometría de plasma de inducción acoplada (ICP), previa digestión de las muestras en horno de microondas marca CEM, empleando una mezcla (HCl+HNO₃, con una relación 3:1).

Las muestras fueron analizadas en un espectrómetro de plasma Termo Jarrel Ash; el As, Bi, Sb y Se, por ICP-MS con generador de hidruros. El control de calidad de los análisis se aseguró mediante el empleo de estándares 1595-006, 1595-004 y 1595-005 High Purity, por cada 10 muestras leídas. Los límites de detección para las muestras sólidas fueron: Pb y Zn=0,02; Cd=0,005; Cu=0,01; As=0,0004; Bi=0,003; Sb=0,05; Se=0,0007; Fe=0,03; Cr=0,05; Ni=0,01; Mg=0,02; Mn=0,04; Na=0,08; Al=0,02; Ba=0,02 y K=0,05; todas las concentraciones expresadas en mg/kg. El sulfato (SO₄) y el carbonato (CO₃) fueron determinados en el laboratorio del centro de investigaciones de la compañía Peñoles.

Análisis mineralógico

fases minerales mayores, menores, e indicios, Las se determinaron por difracción de rayos-X (DRX) en función de las distancias interplanares (d1-d4) y el porcentaje de relación de intensidad (I/I1-I/I4), en un difractrómetro de rayos-X, marca Phillips, modelo X-Pert. Para los análisis de microscopía óptica polarización (MOP), electrónica de barrido (MEB) y de microsonda electrónica (ME), se realizaron secciones pulidas embebidas en resina epóxica, trabajadas con abrasivos y pasta de diamante para obtener superficies de espejo. Para los microanálisis al MEB y en la ME, después de su pulido se recubrieron con una fina capa de grafito. Los análisis por MOP y MEB se realizaron con los microscopios Olympus modelo BH41 y Leica modelo DC300 y el microscopio Phillips modelo XL30. Los análisis por ME se realizaron en un equipo CAMECA modelo SX50. El tiempo (de conteo) para el microanálisis fue de 10 segundos para cada elemento (S, Fe, As, Zn, Cd, Cu, Ni, Pb, Co, Mn, Sb, Ag y Bi). Se utilizaron estándares de compuestos químicos y puros, con límites de detección de 0,3 hasta 1,6 dependiendo del tiempo de conteo y voltaje (20 kV) en las líneas Ka, La y Ma, con corrección de iteraciones ZAF.

RESULTADOS Y DISCUSIÓN

Composición química de residuos mineros

La Tabla 1 recoge la composición química, obtenida por ICP, de los elementos traza. Se encontró que los residuos acumulados portan un alto contenido de metales cuya concentración es muy variable, tanto en las muestras como en las presas. Aunque en las tres presas las concentraciones de As son altas, llegando a alcanzar hasta 38 700 mg/kg, los mayores valores se encontraron en San Miguel.

En las presas San Miguel y El Monte se reportaron las mayores concentraciones de Pb y Zn, aunque en la segunda, las concentraciones de Pb tienden a ser más uniformes (Moreno et al., 2003).

La concentración de Cd, no obstante a ser menor que las de As, Zn y Pb, podría tener un significado ambiental. Por su parte el Cr, Sb, Cu, y Bi mostraron variación en su concentración entre las tres presas. El Se y Ni son también muy variables, el primero más abundante en San Miguel y el segundo en Santa María. El W se concentra en cantidad similar en todas las presas.

Con respecto a los elementos mayores (Tabla 2), se observaron valores más altos y más o menos uniformes de CaO, FeO y SiO₂. Además, el MgO con valores muy similares y un promedio de 1,08 (± 0,38) %, así como las concentraciones menores de MnO 0,18 (± 0,097%) y TiO₂ 0,17 (± 0,13%) representan a la química característica de la mineralización de metasomatismo de contacto (calcosilicatos y carbonatos).

La concentración de FeO y su variación es atribuida a los procesos de oxidación que sufren los jales en las presas y a la mineralogía primaria que incluye sulfuros y minerales silicatados, dando como resultado la precipitación a óxidos y oxihidróxidos de hierro. Los componentes como el Na₂O y P_2O_5 presentan similitudes en sus valores, características de la química del intrusivo (minerales sódico-cálcicos y apatito).

Desv.Est. 9120,48 2693,16 6359,43

Muestra	As	Pb	Zn	Cd	Cr	Sb	Se	Ni	Cu	Bi	W	Ag
	-	-	-	-	Pr	esa Santa Ma	ría	-	-	-	-	-
ZIM01	119	1400	4700	31,6	59	431,5	0,11	56	261	184,4	241,0	23,9
ZIM02	1300	1300	4000	65,4	57	364,1	0,49	173	325	175,2	206,9	20,7
ZIM03	1600	2200	7000	96,5	86	626,0	0,71	139	337	150,7	220,5	33,3
ZIM04	1700	2100	6200	102,8	117	313,5	0,80	91	355	123,4	131,4	24,2
ZIM33	14500	1800	9900	642,7	102	593,2	29,97	64	771	111,3	118,1	30,2
ZIM34	12900	3700	17300	663,6	258	422,6	22,83	47	1785	175,6	90,2	39,5
ZIM35	20300	2800	11000	858,1	153	523,5	35,54	104	676	76,2	74,8	29,3
ZIM36	15200	2000	16500	704,9	166	548,9	31,64	150	1323	163,0	155,1	37,3
ZIM37	10100	4000	9900	440,1	77	537,3	24,00	143	712	143,0	135,5	31,3
ZIM38	4300	1300	5900	197,7	81	359,1	13,35	155	902	161,0	90,5	27,0
ZIM39	18900	3600	11000	791,4	105	798,0	22,99	179	1306	348,0	312,0	51,4
ZIM40	7100	4700	8600	375,4	71	573,5	17,06	158	927	370,7	219,1	59,4
					Pr	esa San Mig	ıel					
ZIM05	20800	2400	12000	911,9	144	591,0	38,53	146	990	173,3	139,9	35,8
ZIM06	38700	16000	22400	1752,2	246	3884,0	19,62	86	889	33,2	97,9	139,7
ZIM07	28100	4500	3500	1236,9	135	1151,0	22,31	26	458	114,9	95,5	56,4
ZIM08	32000	3700	9900	1356,1	116	689,0	60,12	53	634	81,2	104,8	44,3
ZIM09	201	100	100	5,5	66	19,9	1,59	87	15	5,2	ND	5,6
ZIM10	27500	5400	18500	1266,2	105	1099,0	65,78	113	519	52,5	117,8	61,2
ZIM11	28900	6500	14800	1290,6	117	1212,0	65,61	182	713	81,5	105,8	51,3
	1	1			F	resa El Mon	te	1	1			
ZIM17	14600	3500	14400	731,8	264	250,5	12,97	22	840	61,2	51,4	25,9
ZIM18	9700	5500	32400	807,2	270	599,7	20,01	41	1446	62,0	78,9	37,3
ZIM19	12100	4400	6200	549,1	352	334,6	9,86	37	676	80,7	115,2	28,1
ZIM20	7900	4000	12000	423,9	288	317,4	13,59	32	980	97,7	42,2	48,1
ZIM21	11900	4800	14000	585,2	283	389,7	15,14	36	941	87,8	67,8	54,9
ZIM22	11000	6500	24300	692,5	345	379,8	12,97	57	1307	76,5	69,5	41,9
ZIM23	9300	4800	12500	472,7	282	199,0	9,01	97	1138	67,9	79,9	27,0
ZIM24	11200	3600	7500	523,5	303	168,9	10,60	108	861	69,0	102,4	21,9
ZIM25	5200	3400	6400	280,4	292	91,6	7,62	67	350	13,2	45,0	60,5
ZIM26	6900	2200	3800	335,3	229	138,7	5,88	88	186	12,0	46,8	11,0
ZIM27	7000	3800	7000	340,9	403	153,4	3,67	140	317	17,2	44,0	14,8
ZIM28	22700	5700	14300	1010,8	147	917,0	22,50	53	2787	358,9	339,5	76,8
ZIM29	10500	2100	11300	489,8	92	496,7	17,14	68	2008	211,2	211,6	43,5
ZIM30	18300	9500	17600	914,2	253	305,7	12,05	63	693	48,8	72,8	36,4
ZIM31	12300	2400	12300	589,2	113	597,6	18,78	51	998	136,8	200,4	27,8
ZIM32	15300	2800	7400	690,3	168	519,9	13,54	53	1860	379,1	155,2	51,7
ZIM61	9061	3600	16700	305,7	361	161,0	17,00	23	1300	119,3	94,0	63,3
ZIM62	8933	2300	9900	294,1	399	166,0	19,71	22	795	117,6	132,0	42,9
ZIM63	11010	5100	8600	329,6	374	564,0	18,25	35	1300	88,5	124,0	51,4
Prom.	13134,8	3934,21	11363,2	609,363	196,816	565,482	19,2984	85,3947	912,658	127,097	124,458	41,2368

404,23 108,901 621,437 16,2429 49,6961 560,982 97,3926 72,2273 22,7923

Tabla 1. Composición de elementos traza (en mg/kg) obtenida por espectrometría de plasma de inducción acoplada (ICP), en las muestras de jales de las presas Santa María, San Miguel y El Monte, del distrito minero Zimapán

Muestra												
	Al ₂ O ₃	CaO	K ₂ O	MgO	MnO	FeO	Na ₂ O	P ₂ O ₅	TiO ₂	SiO ₂	CO ₃	SO ₄
					Pro	esa Santa Ma	ría					
ZIM01	6,991	14,971	4,457	1,674	0,206	2,753	0,916	0,135	0,333	26,399	9,18	0,21
ZIM02	7,482	14,369	4,818	1,625	0,206	2,740	0,903	0,150	0,350	26,762	6,70	1,00
ZIM03	4,969	14,775	2,674	1,293	0,245	4,477	0,741	0,135	0,233	24,323	6,30	2,77
ZIM04	2,928	12,760	1,023	0,862	0,167	4,888	0,512	0,076	0,150	16,472	3,70	6,22
ZIM33	5,082	21,043	3,204	1,193	0,245	8,696	0,795	0,127	0,250	30,399	8,64	4,33
ZIM34	2,456	13,922	0,517	0,746	0,142	26,682	0,431	0,027	0,133	12,857	2,50	5,07
ZIM35	3,854	23,212	2,228	0,932	0,271	10,973	0,727	0,132	0,183	29,821	9,64	3,38
ZIM36	3,457	19,910	1,867	1,276	0,271	13,443	0,444	0,116	0,183	14,996	6,04	3,62
ZIM37	6,367	22,205	4,167	1,392	0,219	6,586	0,835	0,162	0,316	16,280	10,04	4,16
ZIM38	8,464	13,362	5,396	1,575	0,232	3,833	0,889	0,153	0,433	23,403	5,74	0,22
ZIM39	5,649	19,392	3,156	1,359	0,271	9,700	0,606	0,105	0,300	20,344	5,79	<.01
ZIM40	6,802	17,210	4,613	1,409	0,167	3,705	0,754	0,144	0,350	19,296	12,29	1,04
					Pr	esa San Migi	ıel					
ZIM05	5,271	18,973	3,312	1,409	0,296	10,587	0,579	0,154	0,283	31,490	7,10	3,61
ZIM06	1,133	8,717	0,698	0,033	0,038	27,479	0,377	0,043	0,033	19,489	1,38	10,97
ZIM07	3,779	11,291	2,529	0,646	0,064	8,979	0,620	0,113	0,133	32,303	1,65	14,32
ZIM08	2,928	22,191	1,650	0,630	0,309	12,298	0,606	0,128	0,116	32,517	9,59	4,26
ZIM09	10,373	12,578	1,120	1,276	0,051	2,881	1,604	0,165	0,533	44,583	11,64	<.02
ZIM10	2,550	28,347	1,204	0,779	0,464	8,773	0,687	0,181	0,116	27,233	16,63	4,70
ZIM11	2,739	25,815	1,361	0,779	0,374	9,944	0,647	0,165	0,116	18,141	12,34	7,60
					Р	resa El Mon	e	1		1		
ZIM17	1,473	15,615	0,433	1,260	0,245	29,885	0,512	0,206	0,066	14,183	8,44	1,65
ZIM18	2,324	11,781	1,216	1,309	0,154	27,604	0,525	0,171	0,116	17,285	6,54	2,20
ZIM19	0,661	7,093	0,265	0,480	0,103	16,248	0,431	0,206	0,016	8,664	3,59	7,86
ZIM20	1,152	11,375	0,337	1,061	0,129	31,493	0,431	0,029	0,050	19,916	7,14	1,07
ZIM21	1,984	12,732	1,048	1,144	0,142	29,808	0,566	0,219	0,100	18,312	6,49	1,15
ZIM22	1,190	8,269	0,373	0,978	0,142	36,575	0,552	0,206	0,050	3,829	5,09	1,62
ZIM23	1,719	13,096	0,662	1,475	0,167	29,988	0,539	0,039	0,083	8,856	8,99	0,42
ZIM24	1,658	10,731	0,517	1,376	0,154	15,167	0,512	0,034	0,083	9,070	8,29	0,32
ZIM25	0,888	13,614	0,228	0,911	0,156	15,219	0,660	0,206	0,050	1,732	10,79	7,76
ZIM26	1,001	17,098	0,265	1,094	0,258	13,662	0,552	0,139	0,050	13,670	17,38	3,61
ZIM27	0,585	3,428	0,120	0,132	0,051	17,084	0,660	0,206	0,016	13,006	0,50	6,18
ZIM28	6,027	9,052	4,228	0,746	0,064	17,727	0,687	0,088	0,283	21,671	0,50	6,06
ZIM29	9,088	9,990	6,372	1,144	0,077	10,369	0,889	0,146	0,383	26,869	4,04	1,82
ZIM30	1,360	14,509	0,433	1,177	0,271	27,132	0,471	0,048	0,050	11,295	8,54	9,67
ZIM31	6,802	11,599	4,709	1,210	0,090	13,456	0,862	0,136	0,350	25,992	3,50	6,32
ZIM32	4,572	9,080	2,818	1,293	0,077	11,256	0,714	0,085	0,200	23,767	0,50	12,50
ZIM61	1,322	11,711	0,385	1,558	0,219	38,595	0,087	0,000	0,069	12,260	4,95	2,46
ZIM62	1,001	6,310	0,277	0,795	0,105	19,233	0,039	0,000	0,050	8,851	0,50	4,48
ZIM63	1,851	7,317	0,734	1,127	0,092	17,818	0,092	0,000	0,089	14,150	1,35	4,86
Prom.	3,68242	14,1959	1,98458	1,08311	0,18247	15,7299	0,61721	0,12039	0,17626	19,4865	6,68447	4,19711
Desv.Est	2.66108	5.60458	1.77763	0.38204	0.09663	10,1525	0.26844	0.06458	0.13345	9.01889	4.2469	3 50634

Tabla 2. Composición de elementos mayores (en %) calculados en base óxidos por espectrometría de plasma de inducción acoplada (ICP), de las muestras de jales de las presas Santa María, San Miguel y El Monte del distrito minero Zimapán

El sulfato (SO₄) mostró valores desiguales que van desde 0,21 hasta 14,32%, con un promedio de 4,2% y una desviación estándar de ± 3,50%. La presencia de los carbonatos se confirma por el análisis de CO₃ y presenta valores altos y similares con un promedio de 6,68 y desviación estándar de ± 4,25%. La presencia del sulfato se atribuye a la oxidación férrica y precipitación de minerales sulfurosos primarios como pirita, pirrotita, arsenopirita, formando minerales secundarios como; anglesita (PbSO₄), yeso (CaSO₄.2H₂O) e hidroxisulfatos de hierro como jarosita [KFe₃(SO₄)₂ (OH)₆] y plumbojarosita [Pb_{0.5}Fe₃ (SO₄)₂(OH)₆]. La jarosita se forma bajo condiciones de pH ácidas, ésta fue observada en algunas zonas acuosas de las presas de jales, donde se reportó para el agua un pH menor de 5.

Análisis por difracción de rayos-X (DRX)

Las fases minerales primarias (mena y ganga del yacimiento) y secundarias (oxidación y precipitación) determinadas en las muestras de residuos, presentan diferencias entre las muestras oxidadas y no oxidadas, sobre todo en aquellas que contienen abundante cantidad de calcita, sulfuros (pirita, pirrotita, arsenopirita, entre los principales) y fases secundarias (yeso, jarosita, entre otras). Estas diferencias muestran que la mineralogía en las presas de jales es controlada por los procesos de oxidación y neutralización, los cuales han sido puestos en evidencia en otros depósitos de jales, producidos por yacimientos polimetálicos sulfurosos (Ritcey, 1989; Jambor, 1994; Dold & Fontboté, 2001; Dold & Fontboté, 2002).

Para interpretación por difracción de su rayos-X se denominan fases minerales mayores, menores, e indicios, en función del porcentaje de intensidad (I/I1-I/I4) del pico mayor de cada especie respecto al pico mayor de la fase presente en mayor concentración. Las fases minerales identificaron presentes se utilizando las distancias interplanares (d1-d4), como se muestra en la Tabla 3.

Muest.	Mineralogía	Fase Mayor	Fase. Minor	Reflejo	d1	I/I1	d2	I/I2	d3	I/I3	d4	I/I4
ZIM1	Calcita	х			3,03651	100,0	2,29064	5,5	2,09360	5,6	1,91067	12,6
	Cuarzo		х		3,33785	24,9	4,24885	4,9	1,81602	6,6	1,53951	1,8
	Pirita			х	1,62965	3,0	2,71211	2,6	2,41906	3,4		
ZIM2	Calcita	x			3,04005	100,0	2,28172	21,0	2,09152	13,0	1,91067	18,6
	Cuarzo		х		3,34092	49,0	4,25691	15,6	1,81703	10,4	1,52731	5,3
ZIM35	Calcita	х			3,03752	100,0	2,28311	10,2	2,09199	6,2	1,91181	16,9
	Cuarzo		х		3,34462	66,9	4,25792	7,9	1,81602	9,5	1,54103	5,4
	Pirita			х	1,63271	13,3			2,42032	7,0	2,21112	4,8
ZIM06	Yeso	х			7,61249	100,0	3,79847	27,5	3,06972	19,8	2,53840	2,2
	Cuarzo		х		3,34216	1,7	4,28435	23,4	1,81062	2,4	1,53731	0,3
	Esfalerita		х		3,14658	4,1	1,91866	2,1	1,63284	2,0	2,70018	0,7
ZIM10	Calcita	х			3,03651	100,0	2,28255	15,1	2,09337	15,9	1,91049	18,9
	Cuarzo		х		3,34462	44,0	4,26691	23,5	1,81652	7,9	1,54079	3,6
	Esfalerita		х		3,14821	16,1	1,91049	18,9	1,63191	8,1	2,71131	9,7
	Pirita		х		2,71131	9,7	1,63191	8,1	2,41812	6,7	2,21138	2,9
	Arsenopirita			х	2,45318	7,1	2,66619	6,8	2,41812	6,7		
ZIM17	Calcita	х			3,03550	100,0	2,28589	10,5	2,09962	6,7	1,91485	17,9
	Pirita	х			2,71491	90,1	1,63484	22,7	2,42726	13,0	2,21658	17,2
	Esfalerita		х		3,14223	8,9	1,91485	17,9	1,63484	22,7	2,71491	90,1
	Pirrotita		х		2,06270	14,8	2,66235	15,1	2,98099	8,0	1,72105	14,1
	Yeso			х	7,67173	7,0	4,29152	6,4				
ZIM24	Calcita	X			3,03348	100,0	2,27950	5,1	2,09337	5,2	1,91143	77,9
	Cuerzo	A			2,70972	40.8	4 26702	43,1	1 91625	2.9	1,54068	7.2
	Esfalarita		X V		3 13304	20.0	1 011/3	77.0	1,63257	3,0 45.1	2 70972	87.8
	Pirrotita			v	2 06270	11.6	2 96985	87	2 63122	7.0	1 71731	2.6
7IM20	Calcita	v		Λ	3.03954	100.0	2,90985	22.2	2,03122	0.0	1,71751	2,0
211127	Cuerzo	×			3 34031	85.3	4 24684	58.1	1 81771	12.0	1,51102	13
	Pirita	~	v		2 71011	27.1	1 63257	15.9	2 / 1937	21.6	2 20930	83
	Pirrotita		x		2,06293	25.7	2 66311	24.7	1 71746	10.6	1 60426	6.8
	Esfalerita		A		3.13466	8.6	1.91162	7.5	1.63257	15.9	2.71011	27.1
ZIM62	Yeso	x			7 54471	100.0	2 70262	59.8	2 41943	56.9	4 26511	49.4
	Pirita	x			2,70262	59.0	1.63221	26.5	2,41254	23.6	2,20728	22.7
	Calcita	x			3 05898	37.6	2,27956	2.1	2,08195	33	1 90789	14.7
	Arsenopirita	x			2,44133	15.7	2,65475	17.5	2,41943	56.9	2,41254	23.6
	Cuarzo		x		3,33670	13.0	4,26511	49.4	1.80966	7.2	1.53480	1.0
	Esfalerita		x		3.11917	8.6	1,91300	26.5	1.62823	12.6	2,70262	59.8
	Pirrotita		x		2.06275	6.1	2.65475	17.5	2.97234	6.4	1.72109	6.5
	Galena			х	2,97234	6,4	3,43991	2,0	2,08195	3,3	1,79617	2,9

Tabla 3. Resultados de la difracción de rayos X para los jales de las presas San Miguel, Santa María y El Monte del distrito minero Zimapán

Se determinó como fase mineral mayoritaria a la calcita, presente en todas las muestras analizadas. En la presa Santa María, el cuarzo se observa como fase minoritaria, mientras que la pirita y el yeso ocurren como fases indicio. En las Presas San Miguel y El Monte, el yeso aparece en ocasiones como fase mayoritaria, que puede ser una concentración puntual de fase mineral secundaria, además del aumento de fases minoritarias y mayoritarias de sulfuros (pirita, esfalerita, galena, arsenopirita) e indicios de calcosilicatos como la diópsida. Esto refleja, por una parte, la naturaleza metalogenética del yacimiento (metasomatismo de contacto) constituido sulfuros, sulfosales y calcosilicatos (minerales por primarios) y, por otra, la neoformación mineralógica por la oxidación y precipitación de minerales como los sulfatos (minerales secundarios).

Análisis por microscopía óptica de polarización (MOP)

En las presas de jales la mineralogía metálica es abundante y compleja (60 a 70% la superficie de estudiadas). Se observó, de secciones por orden abundancia, pirrotita, pirita, marcasita, calcopirita, esfalerita, galena, goethita y arsenopirita, así como algunas sulfosales incluidas dentro de los sulfuros. Estos sulfuros constituyeron la mineralogía primaria del yacimiento, los oxihidróxidos de hierro y sulfatos que rodean a los minerales primarios o rellenan las fracturas que les afectan constituyen la mineralogía secundaria.

Así, se tiene que la pirita presenta una morfología que va de subhedral a anhedral, se encuentra en gran proporción liberada y en forma de inclusiones dentro de la esfalerita. Se asocia a pirrotita, marcasita y a calcopirita, las cuales en ocasiones se asocian a silicatos. También se observó muy alterada en sus bordes y fracturada. Por su parte la pirrotita se encuentra en gran proporción liberada, normalmente presenta un fracturamiento que bordes de alteración presenta muy desarrollados. Asociada en ocasiones a pirita, esfalerita, galena y arsenopirita. La marcasita presenta fracturamiento multidireccional con algunos completamente huecos rellenos por óxidos de hierro, en ocasiones se observa asociada а hematita en forma de vetillas multidireccionales que han alterado y reemplazado a la marcasita. También se observó una alteración muv intensa, tanto en el centro del mineral como en sus bordes, la cual se encuentra reemplazando completamente a la marcasita y en ocasiones presenta relictos de pirita y calcopirita, es menos abundante que la pirita y la pirrotita.

Se observó que la calcopirita se presenta en asociación con esfalerita y pirita, en ocasiones se observa incluida en silicato. Puede presentar bordes de alteración muy desarrollados y fracturamiento relleno con óxidos de hierro, pero que es menor que el que presenta la pirrotita.

La galena se encuentra generalmente dentro de la pirita en forma de inclusiones y siguiendo su fracturamiento o en contacto con la misma. También aparece asociada a pirita, esfalerita y arsenopirita, es menos abundante que la esfalerita. Se encontró que la esfalerita es abundante, aunque menos que la pirita y pirrotita, normalmente se asocia a pirita, pirrotita y calcopirita. Presenta, en forma de inclusiones, pirita, calcopirita y galena en desorden o alineamiento sobre siguiendo un sus clivajes. En ocasiones se presenta muy fracturada y alterada en sus bordes, también se observó asociada con marcasita y pirrotita y dentro de la esfalerita se encuentra rellenado fracturas.

La arsenopirita está normalmente asociada con la pirita, pirrotita y esfalerita y en ocasiones se observa en pequeños en la marcasita. La mayoría de la arsenopirita está incluida o asociada a silicatos, en asociación con otros sulfuros como la pirita y la marcasita. Algunas veces se observó liberada con sus bordes completamente alterados por óxidos de hierro.

Respecto a los minerales no metálicos (minerales primarios) se pudo identificar abundante calcita, algunos calcosilicatos como diópsida, hedenbergita, augita, wollastonita, y cuarzo en menor proporción.

Análisis por microscopía electrónica de barrido (MEB)

En las muestras se observó que los minerales que presentan una mayor alteración son la arsenopirita, pirrotita y galena. En la Tabla 4 se presenta el microanálisis puntual en cristales de arsenopirita y las fases precipitadas, determinadas en los bordes de la misma. Los microanálisis puntuales en algunos cristales de arsenopirita (puntos 2 y 6 de Tabla 4) presentan composiciones estequiométricas calculadas en base a tres átomos, que corresponden a su fórmula teórica:

 $Fe_{(0.99)} As_{(0.99)} S_{(1.13)}$; $Fe_{(1.0)} As_{(1.0)} S_{(1.0)}$; $Fe_{(1)} As_{(1)} S_{(1)} = FeAsS$.

Las fases de alteración determinadas en los bordes de la arsenopirita presentan una composición heterogénea y compleja para cada partícula, por lo que es difícil calcular la estequiometría para asignar a estas composiciones una fase mineral secundaria determinada. Sin embargo, por las composiciones obtenidas, estas pueden corresponder a fases minerales de arseniatos férricos (puntos 1 y 4 de tabla 4 y Figura 2) y sulfo-arseniatos (puntos 3 y 5 de tabla 4 y Figura 3), lo que se puede interpretar como un proceso progresivo de baja intensidad de neoformación (alteración por oxidación) de la arsenopirita a dichas fases, ya que los contenidos en peso porcentual del As, Fe y S son próximos a los determinados en la fórmula teórica de esta.

Figura 2. Fotomicrografía al MEB con electrones retrodispersados, se observa la neoformación (alteración progresiva de la arsenopirita) a una fase mineral de arseniato férrico.

La formación de arseniatos férricos como la escorodita y la simplesita en los bordes de la arsenopirita, puede deberse а una secuencia paragenética donde la oxidación de los sulfuros relacionados con arsénico ejerce un mayor control sobre la movilización acuosa de este. En la mayoría de los casos la arsenopirita es la principal portadora de arsénico, la oxidación de la cual normalmente resulta la formación in situ de escorodita $(FeAsO_4.2H_2O)$ o costras (capas) similares de arseniatos férricos (Williams, 2001).

Por otra parte, la precipitación de la escorodita como una alteración de la arsenopirita se produce bajo la mayor parte de condiciones de pH/Eh, dando un ambiente apropiado a la concentración de hierro reactivo (Williams & Breward, 1995). Es además importante señalar que estos microanálisis fueron realizados en superficies no ideales como bordes y fracturas donde se presentan los productos de alteración, lo que puede ocasionar dificultades en el cálculo de la fórmula estructural.

En la Tabla 5 se exponen los resultados de la fase mineral pirrotita, la cual es uno de los minerales más abundantes dentro de estos jale y se encuentra muy alterada. Los microanálisis realizados en algunas partículas (puntos 1, 3, 4, 7, Tabla 5), permiten determinar una pirrotita de acuerdo a los cálculos estequiométricos, en base a dos átomos de su fórmula teórica; $Fe_{1-x}S$. Se observó que estos cristales de están siendo alterados a través de fracturas y planos de macla, lo cual es evidente por la formación de óxidos y oxihidróxidos de hierro (punto 2 Tabla 5;Figura 4), o bien por sulfatos férricos (puntos 5, 6, 8 Tabla 5; Figura 5).

Figura 3. Fotomicrografía al MEB con electrones retrodispersados, se observa la neoformación (alteración progresiva de la arsenopirita) a una fase mineral de sulfoarseniato.

Figura 4. Fotomicrografía al MEB con electrones retrodispersados, se observa la neoformación (oxidación de la pirrotita) a una fase mineral de óxidos y oxihidróxidos de hierro(?).

Figura 5. Fotomicrografía al MEB con electrones retrodispersados, se observa la neoformación (oxidación de la pirrotita) a una fase mineral de sulfato férrico.

En las presas de jales, donde los residuos son ricos en sulfuros, los minerales secundarios más abundantes y casi siempre presentes son principalmente la goethita [aFeO(OH)] y el yeso (SO₄Ca.2H₂O), así como la jarosita [KFe₃(SO₄)2(OH)₆], además de otras especies minerales ricas en hierro en varias etapas de hidratación (Jambor, 1994). Esto es observado en los residuos y confirmado por resultados de la difracción de rayos-X en varias muestras donde la fase mayoritaria principal fue el yeso.

Figura 6. Fotomicrografía al MEB con electrones retrodispersados, se observa la neoformación (oxidación de la galena) a una fase mineral de anglesita

Figura 7. Fotomicrografía al MEB con electrones retrodispersados, se observa la neoformación (oxidación de la galena) a una fase mineral de cerusita.

En los microanálisis realizados en algunos cristales de galena (Tabla 6), se pudo identificar a esta por medio de cálculos de la fórmula estequiométrica en base a dos átomos de su formula teórica PbS (puntos 1, 2 de Tabla 6). Se identificó en algunos de sus bordes la neoformación progresiva (fases minerales secundarias) de anglesita (PbSO₄) (puntos 3, 4 de Tabla 6;

Figura 6) y cerusita (PbCO₃) (puntos 5, 6 de Tabla 6; Figura 7) que son originadas por los procesos de oxidación de la galena. Además de otras fases minerales de sulfatos férricos de plomo (punto 7 de Tabla 6; Figura 8), las cuales pueden corresponder a la plumbojarosita [(Pb_{0.5}Fe₃(SO₄)₂(OH)₆].

Figura 8. Fotomicrografía al MEB con electrones retrodispersados, se observa la neoformación (oxidación de la galena) a una fase mineral de sulfato férrico de plomo (plumbojarosita).

Los microanalisis realizados en partículas de esfalerita permitieron determinar por cálculo de la fórmula estructural estequiométrica a esta especie mineral, la cual se presenta menos alterada que la galena (Tabla 7). Se observa que los contenidos de Zn son más bajos que los establecidos en la fórmula teórica y los de hierro presentan un aumento en su concentración, lo que puede corresponder a la substitución Fe por Zn, que se encuentra en la variedad mineral marmatita (esfalerita ferrífera). La esfalerita en el skarn es a menudo rica en hierro y el contenido de este varía hasta un 35% de peso porcentual (puntos 1, 2, 3, 4, 5 de Tabla 7). Estos cristales de esfalerita, en su mayoría se presentan solamente fracturados, no se observan áreas significativas (bordes y fracturas) rellenas de productos de alteración (oxidación) como sucede en la arsenopirita y en la pirrotita. También se observa la influencia de las vetillas de cuarzo, ya que este puede estar dentro de la esfalerita o en asociación con ella (puntos 6, 7 de Tabla 7).

En algunas partículas de sulfuros (asociación de pirita-calcopiritasulfosal, esfalerita-arsenopirita-galena-sulfosal y arsenopirita-sulfosal) los resultados de los microanálisis permitieron identificar a la especie mineral boulangerita (puntos 1, 2, 3, 4 de Tabla 8) con variantes en su contenido elemental de plomo (rangos de incertidumbre de error que varían en concentración de Pb) y fórmula estructural calculada en base a veinte átomos que corresponden a su fórmula teórica Pb₅Sb₄S₁₁. En otros microanálisis se supone que es la misma especie mineral (muy similar), solo que aquí se observa la presencia de otros elementos como el Si y O (puntos 6, 7 de Tabla 8), que representarían al cuarzo constituyente de las vetillas dentro de la mena. También se observa la presencia y variación en contenidos de elementos como el Fe, As y el Cu (puntos 5, 6, 7 de Tabla 8), los cuales son constituyentes de estas especies minerales, así como la plata. Sin embargo, los cálculos de las fórmulas estructurales permitieron no asignar para estas composiciones una fase mineral determinada. Ya que estas partículas presentan bordes y fracturas completamente alterados causados por procesos de meteorización y por factores antropogénicos (reactivos utilizados para su beneficio).

25 Minería y Geología / v.25 n.2 / 2009

Tabla 4	W % del microanálisis en cristales de arsenopirita										
Element											
0	1	2	3	4	5	6					
0	36,96		24,72	28,57	10,37						
As	27,07	41,99	30,11	25,29	40,60	47,21					
Si	8,86			7,73							
Fe	27,11	35,02	29,20	31,37	32,32	32,32					
S		22,99	9,36		16,71	20,47					
K			6,62								
Ca				6,38							

Tablas 4-8. Resultados del análisis químico semicuantitativo por MEB

Tabla 5		W % del microanálisis en cristales de pirrotita										
Elemento	1	2	3	4	5	6	7	8				
0		24,29			22,88	20,22		17,77				
S	41,60	3,19	40,49	54,02	18,12	21,35	41,60	19,50				
Fe	58,40	72,52	59,51	45,98	59,00	58,43	58,40	62,73				

Tabla 6		W % del microanálisis en cristales de galena										
Elemento	1	2	3	4	5	6	7					
0			3,12	10,46	51,72	36,88	24,42					
S	12,18	12,70	1,39	2,42		3,72	10,18					
Pb	87,12	87,30	94,91	87,12	16,34	17,42	42,82					
Fe					9,39	19,53	22,58					
С					15,72	17,49						
Mg			0,58									

Tabla 7		W % del microanálisis en cristales de esfalerita										
				4								
Elemento	1	2	3		5	6	7					
S	33,71	33,87	34,57	35,31	34,95		13,87					
Fe	13,77	9,95	14,30	11,00	8,81	16,02	42,83					
Zn	52,52	56,18	51,13	53,69	56,24	16,09	28,61					
0						31,81	10,48					
Si						13,22	4,21					
Pb						22,86						

Tabla 8	W	W % del microanálisis en partículas de boulangerita									
				4							
Elemento	1	2	3		5	6	7				
S	17,36	15,46	16,43	15,51	41,80		1,73				
Sb	21,64	17,59	18,44	17,39	39,27	42,96	27,49				
Fe					3,63	5,79	6,44				
As					15,29	18,17					
0						21,15	18,27				
Si						7,83	5,97				
Cu		1,19				4,09	2,70				
Pb	61,00	65,75	65,13	67,10			37,39				

Análisis por microsonda electrónica (ME)

Los microanálisis por MEB permitieron observar la variación en composición de los compuestos que constituyen los bordes y relleno de las fracturas de minerales primarios como: arsenopirita, pirrotita, galena, esfalerita. Estos son algunos de los minerales más abundante en este distrito, son muy variables en su composición, ya que se pudo comprobar pocos puntos con una estequiometría que solo mostró la composición primaria del mineral. El análisis por microsonda electrónica (ME) fue realizado sobre algunas de las partículas analizadas al MEB con la finalidad de confirmar la composición de las fases minerales secundarias. Se realizaron cálculos con los datos obtenidos del microanálisis, normalizando y calculando para poder establecer una especie mineral con una estequiometría aceptable.

Los análisis puntuales por microsonda electrónica en los bordes de la arsenopirita permitieron determinar la formación de arseniatos tipo escorodita ($Fe^{3+}AsO_4.2H_2O$) y simplesita ($Fe_3^{2+}(AsO_4)_2.8H_2O$) (puntos 1 y 4 de Tabla 4 y Figura 2). Se puede observar que el análisis elemental presenta valores porcentuales para el Fe y As muy cercanos a los establecidos en la fórmula teórica de ambas especies, así como los cálculos normalizados en Fe_2O_3 y As_2O_5 . Sin embargo, los resultados de la estequiometría sólo fueron óptimos para dos puntos analizados.

Los oxihidróxidos y sulfatos férricos formados en los bordes y fracturas de la pirita y pirrotita corresponden a la formación de las especies minerales goethita y jarosita (punto 7 de Tabla 6; Figura 8). Sin embargo, los cálculos no permiten establecer especies minerales óptimas, ya que estos jales pueden presentar una gran variedad de especies minerales ricas en hierro y con otros elementos como impurezas, los cuales están en varias etapas de hidrólisis. También se determinó la presencia de As como impureza dentro de la pirita, en concentraciones mínimas que van de 0,02 a 1,10 en peso porcentual. Los análisis puntuales en la galena confirmaron esta especie mineral y en los bordes de ésta se determinó la neoformación de cerusita, anglesita y plumbojarosita, las cuales ocurren por oxidación e hidrólisis bajo condiciones oxidantes de la galena.

En la esfalerita se observó pequeñas concentraciones de Cd y Mn (0,17 a 0,55 y 0,10 a 1,33, en peso porcentual, respectivamente). El hierro se presenta en concentraciones variables, con valores que van desde 8,35 hasta 14,30 en peso porcentual, por lo que podría corresponder a la variedad mineral marmatita (esfalerita ferrífera), la cual presenta contenidos de hierro hasta de 36,5 en peso porcentual.

Finalmente, en los microanálisis realizados en las partículas de las sulfosales (boulangerita), se determinó la presencia del As, el cual se presenta en concentraciones bajas con valores que varían desde 0,30 hasta 0,65, así como Cd y Bi con concentraciones promedio de 0,03 y 65% en peso porcentual en todos los casos, elementos que pueden ser liberados durante los procesos de meteorización.

CONCLUSIONES

Los residuos (jales) muestran un alto contenido de metales cuya concentración es muy variable. El As está presente en las tres presas, pero abunda más en San Miguel. El Pb alcanza mayor concentración en las presas San Miguel y El Monte. El Cd aunque se encuentra en menos cantidad que el As y el Pb puede tener significado ambiental. Mineralógicamente, los residuos están constituidos por minerales sulfurosos (pirita, pirrotita, arsenopirita, esfalerita y galena entre otros) presentando una mayor alteración (neoformación) la pirrotita, arsenopirita, galena y pirita, principalmente en la presa San Miguel, que es la más antigua del distrito. En esta presa se observaron horizontes con una granulometría mayor (arenosa) y una mineralogía típica de fases minerales secundarias (óxidos, oxihidróxidos, sulfatos e hidroxisulfatos). Esto se pudo observar también en algunas muestras de las otras presas de jales.

En la alteración de la pirita y la pirrotita, sobre todo en esta última, se observó la formación de oxi-hidróxidos de hierro (goethita) siguiendo una dirección preferencial, así como jarosita en las presas San Miguel y El Monte. La interpretación de los resultados para la arsenopirita y pirrotita (cálculo de fórmulas estructurales), a partir de los microanálisis, tanto de MEB como de microsonda electrónica, se vio afectada ya que en obtener pocos puntos obug una formula muy se estequiométrica, debido a la complejidad de la estructura cristalina, por lo que tendría que utilizarse otra técnica analítica.

La galena dio lugar a la neoformación de fases secundarias de plomo como anglesita, cerusita y plumbojarosita, originadas por la oxidación e hidrólisis de la galena. La esfalerita fue clasificada como marmatita por su contenido de hierro.

En la boulangerita se observó la variación (concentración) de elementos constituyentes como el Pb y Sb. Además, la presencia de As, Cu y Ag como constituyentes de estas especies minerales (sulfosales) y la presencia de Cd y Bi, pueden tener un significado de tipo ambiental, al ser liberados por los procesos de meteorización que actúan en las presas de jales. Finalmente, y de acuerdo con los resultados obtenidos, se concluye que estos residuos pueden considerarse como potencialmente tóxicos.

AGRADECIMIENTOS

A la Universidad Autónoma del Estado de Hidalgo (UAEH) a través de sus programas de superación personal (PROMEP) y al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el apoyo brindado para la realización de estudios de Posgrado.

REFERENCIAS BIBLIOGRÁFICAS

- CARRILLO, M. M. & SUTER, M. 1991. Región de Zimapán, Hidalgo.
 Observación de un ejemplo de la tectónica de la Sierra Madre
 Oriental. U.N.A.M., Inst. de Geología. U.A.E.H., Inst. de Invest. en
 Ciencias de la Tierra. Soc. Mex. de Mineralogía. Sría. de Educ.
 Pública, Subsría. de Educ. Sup. e Inves. Científica. I Conv. sobre la
 Evol. Geol. de México y Congreso Mexicano de Mineralogía.
 Pachuca, Hgo., México, *Excursión geológica, 41 p.*
- DOLD, B. 1999. Mineralogical and geochemical changes of copper flotation tailings in relation to their original composition and climatic setting: Implications for acid mine drainage and element mobility. [Faculté des Sciences, Université de Genéve], (Tesis Doctoral), 230 p.
- DOLD, B, & FONTBOTÉ, L. 2001. Element cycling and secondary mineralogy in porphyry cooper tailings as a function of climate, Primary mineralogy, and mineral processing. *J.* Geochem. Expl, 74 :3-55.
- DOLD, B. & FONTBOTÉ, L. 2002. A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre Belt. Northern Chile. Chem. Geol., 189 :135-163.
- EDWARDS, J.D. 1955. Studies of some early Tertiary red conglomerates of central Mexico. *U.* S. Geological Survey, Professional paper 264-H, p. 153-185.
- EINAUDI, M.T., MEINERT, L.D. & NEWBERRY R.J. 1981. Skarn deposits. *Economic Geology*, vol. 75th Anniversary :317-391.
- GAYTÁN, R.J.E. 1975. Exploration and development at La Negra mine, Maconí, Querétaro, México. [Universidad de Arizona, Tucson, Az.], (Tesis de Maestría), 98 p.
- GEMMELL, J.B. (1983). Ore microscopy study of of the Concordia NW block, El Monte mine, Zimapán district, Mexico. Compañia Fresnillo. 28 p.
- GEYNE, A.R., FRIES, C. JR., SEGERSTROM, K., BLACK, R.F. & WILSON, I.F. 1963. Geología y yacimientos minerales del distrito de Pachuca-Real del Monte, Estado de Hidalgo, México: México, D. F., Consejo de Recursos Naturales no Renovables, Pub. 5E, 222 p.

- GONZÁLEZ, C.E.L. & JAIMES, M.L.M. 1986. Modelo metalotectónico de la mineralización de tungsteno del skarn de plomo-zinc de Zimapán, Hgo., en base a datos isotópicos de Rb/Sr , C y O. México, D. F., [U.N.A.M., Fac. de Ingeniería] Tesis Licenciatura, 82 p.
- JAMBOR, J.L. 1994. Mineralogy of sulfide-rich tailings and their oxidation products. In: Jambor, J. L. and Blowes, D. W. (Eds.). Short course handbook on environmental geochemistry of sulfide mine-waste. Mineralogical Association of Canada. Nepean, v. 22, p. 59-102.
- JICA, 1980. Report on geological survey of the Pachuca area, central Mexico. Phase I: Japan International Cooperation Agency and Metal Mining Agency of Japan-Consejo de Recursos Minerales, Mexico. 109 p. (inédito).
- MORENO. T.R., TÉLLEZ, H.J. & MONROY, F.M.G. 2003. Caracterización de jales sulfurosos del estado de Hidalgo como apoyo a la identificación de modelos geoambientales. XXV Conv. Inter. de la AIMMG de México, Acapulco, México, (Memoria).
- NORDSTROM, D.K. & ALPERS, C.N. 1999. Geochemistry of acid mine waste, in: Plumlee, G. S. and Logsdon, M. J., Eds. Reviews, in Economic Geology, The environmental geochemistry of ore deposits. Part A: Processes, techniques and health issues, v. 6A, p.p. 133-160.
- RITCEY, G.M. 1989. Tailings management, problems and solutions in the minig industry. Elsevier Science Publishing Co. Inc. 970 p.
- SEAL II, R.R., FOLEY, N.K. & WANTY, R.B. 2000. Introduction to geoenvironmental models of mineral deposits. Geoenvironmental analysis of ore deposits. 5th International Conference on Acid Rock Drainage (ICARD), Denver, Co. pp.7.
- SEGERSTROM, K. 1962. Geology of south-central Hidalgo and northeastern Mexico, Mexico. U. S. Geological Survey, Bull. 1104-c, 87-162
- SIMONS, F.S. & MAPES, V.E. 1957. Geología y yacimientos minerales del distrito minero de Zimapán, Hidalgo. México, D. F., Instituto Nacional para la Investigación de Recursos Minerales. Boletín (40) 270.
- VILLASEÑOR, C.M.G., GÓMEZ, C.A., MEDINA, J.L., CONDLIFFE, E. & LOZANO, S.C.R. 1987. Boulangerita de la chimenea Las Animas, Zimapán,

Estado de Hidalgo: Mineralogía y Metalogenia. Sociedad Mexicana de Mineralogía, A. C., Bol. de Mineralogía (3) 30.

- WILLIAMS, M. 2001. Arsenic in mine waters: an international study. *Environmental Geology* 40 (3) :267-278.
- WILLIAMS, T.M. & BREWARD, N. 1995. Environmental impacts of gold and complex sulphide mining with particular reference to arsenic contamination. Brit. Geol. Sur. Overseas, Geol. Ser. Tech. Report WC/95/06.
- YTA, M. & MORENO. T.R. 1997. La mineralización en los distritos mineros Pachuca-Real del Monte y Zimapán. Su papel en la evolución metalogénica del estado de Hidalgo, México. II Convención sobre la evolución geológica de México y recursos asociados. Guía de excursiones, Pachuca. Hidalgo, 73-84.